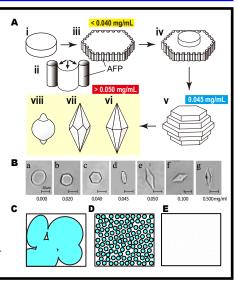
Mass preparation of AFPI, AFPIII, and AFGP from Japanese fish

Hirotaka Ishii¹, Toshifumi Inoue¹, Takeshi Koizumi¹, Ai Miura², and Sakae Tsuda^{2*} 1 NICHIREI CORPORATION, JAPAN

2 NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST), JAPAN

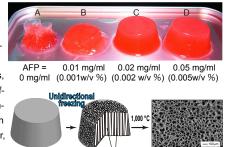
Abstract

Freezing is initiated by generation of numerous embryo ice crystals in water, which grow and merge together to form their multicrystaline state, the ordinary ice block. Antifreeze protein (AFP) is capable of binding to these ice crystals to inhibit their growth, and disturbs such general ice formation. This mechanism is expected to solve many technical problems with regard to the frozen storage of water-containing materials, such as foods and tissues. The fish-derived AFP can also bind to the lipid bilayer to prolong the lifetime of a cell, which is applicable to the short-term hypothermic cell preservation. Natural fish AFP is a mixture of 2-13 isoforms that function together far more effectively than any single isoform. We have been therefore trying to develop mass preparation method of natural fish AFP (the mixture), and now AFPI, AFPIII, and AFGP samples are available from NICHIREI CORPORATION, Japan (E-mail to s.tsuda@aist.go.jp or directly to N1000X016@nichirei.co.jp). Each AFP sample is highly purified (>95%) and contains neither cations nor buffer detergents. The samples are also sterilized using 0.22 µm syringe filter, so that directly applicable to any kind of experiment including medical tests. AFPII sample will also be released soon.


Products

We have been improved the methods to purify the AFP samples from fish muscle homogenates (Nishimiya, 2008). Our AFPI, AFPIII, and AFGP show 800, 50, and 1,600 mg/mL of high water solubility, and ther maximum TH values are 3.2, 2.1, and 5.0°C, respectively. They are also recovered from heating to 95°C. In addition to these highly purified AFPs, crude products of approximately 20% purity can also be supplied on request.

AFPI	AFPIII	AFGP Gadidae		
Pleuronectidae	Zoarcidae			
Ala-rich, 11-res.repeats	Unbiassed, SP and QAE-groups	HO CH HO CH		
3.3 kDa	7 kDa	2.6 -34 kDa		
3.3 kDa		N/A		
α-Helix	β-Sandwich	Polyproline II helix		
Lot. PR13000156 MI E · R シンパン製 MI E · R シンパン製 MI E · R R シンパン製 ・ R · R R R D · C · R · R · R · R · R · R · R · R · R	設定機能 保険に整大者タンパリ を対象の Type II Anti-Freeze Protein だって適合してください。 は当ります。 他にしんだり、日、世童なりの記されば、 を対象では発行できまった。 を対象では発行であった。また 他にもの中国には使用しないでくだか。 様式会社であります。 様式をあります。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Sample LOPE Sample LOPE Market Freeze Chyprophile from Table Code Table		


Functions

A single ice crystal consists of water molecules in a hexagonal arrangement, while in solution it forms a disk-like shape (A-i). In AFP solutions, ice crystal growth is only allowed between the bound AFPs (A-ii) according to the Gibbs-Thomson effect. The resultant convex ice front sandwiched between the AFPs is terminated its growth to form a flat, AFP-accumulated surface (A-iii). This process transfers the disk-shaped ice crystal into a hexagonal plate, and allows generation of a new disk on that plate through a mechanism of 2D-nucleation. Repeated AFP binding and new disk generation causes successive stacking of smaller hexagonal ice plates in the direction of the c-axis (A-iV&V), forming a hexagonal bipyramid (A-Vi) onto which millions of AFPs are adsorbed. This unique ice crystal is further modified into its derivative forms such as the hexagonal trapezohedron (A-Vii) or the lemon-like shape (A-Viii). The ice hexagonal plate remains unchanged and is not modified into a bipyramid when AFP concentration is below 40-50 µg/mL (depends on the condition), which we termed the "critical ice-shaping concentration" (CISC) (Mahatabuddin et al. 2016). The general disk-shape ice crystals (A-i) undergoes ice recrystallization and forms multicrystalline state by freezing (C). This ice expands the volume and physically destroys inside texture of all of the frozen materials. AFP is capable of inhibiting growth of the ice crystals to form ice slurry (D). If we can minimize the size of each ice crystal ultimately small, the frozen state will become noncrystalline glass-like state (E). That is, AFP should be able to freeze and preserve the water-containing materials by filling their inside with numerous tiny ice crystals. This can be realized with a home freezer (-20 degC) without LN2 nor deep freezer.

Application 1

AFP exhibited a gel protection function, which made us to develop "gelation freezing method" to fabricate porous materials, for which AFP has a significant contribution (Fukushima et al. 2013). A solution of gelatin, ceramic powder, and AFP is initially cooled to form a gel structure,

0.5% (w/v) Agarose gel after freeze-thawing

and placed on a freezing plate to induce unidirectional freezing. Because AFP binds to the surface of the elongating ice crystals, extremely sharpened and uniformly aligned ice needles are created in the frozen gel. After sintering it at 1,000°C, a ceramic material containing unidirectionally-aligned dendritic pores was created.

Ceramics Powder

Application 2

Cell protection effect of AFP has been suggested in both cryo- and h pothermic condition. The former us very diluted solution (below CISC) : as not to create ice bipyramids. In nature, AFP functions with glucose, glycerol, lipids, ions, minerals, peptides, etc. AFP performance will be maximized by using otimal combina tions of these substances, which wi

liffer between the applications.	
Summary	

ıy-	Rat kidney Mouse ovary Bovine oocyte Buffaro sperm Mouse ovary Marine diatom Buffaro sperm	AFGP8 AFGP AFPIII LeIBP AFPIII	-4°C vitrification vitrification -196°C vitrification -196°C -196°C	10 1 1,000 20 100	5 μM mg/ml mM) μg/ml mg/ml μg/ml μg/ml	Tomalty 2017 Kim 2017 Liang 2016 Qadee 2016 Lee 2015 Koh 2015 Qadee 2014
•	Rabbit sperm Rabbit embryo	AFPIII	-196°C -196°C		μg/ml ng/ml	Nishijima 2014 Nishijima 2014
ed	Seabream sperm Mouse oocyte	AFPIII AFPI, III AFPIII	-196°C vitrification	1	ng /mι μg/ml ng /ml	Beirao 2012 Jo 2012
so	Red blood cell Mouse oocyte Seabream embryo	LeIBP AFPIII AFPI	-196°C vitrification -10 °C	500	μg/ml ng/ml N/A	Lee 2012 Jo 2011 Robles 2007
	Human blood cell Rat islet Bovine sperm	syAFGP syAFGP AFPI	-196°C -196°C -196°C	500	μg/ml μg/ml μg/ml	Matsumoto 2006 Matsumoto 2006 Prathalingam 2006
	Red blood cell	AFPI, II, III	-196°C		ug/ml	Chan 1996
,	Rat liver	AFGP	-3°C		mg/ml	Rubinsky 1994
	Red blood cell	AFPI	-196°C		μg/ml	Carpenter 1992
	Mouse embryo	AFGP	vitrification	40	mg/ml	Rubinsky 1992
		'				
	Cells	Non-freezing preservation				References
a-	Bovine embryo Rat Insulinoma cell Mouse spermatozoa	AFPI, III AFPI, III AFPIII	+4°C +4°C	5 days 5 days	10 mg/ml 10 mg/ml 1 mg/ml	Ideta 2015 Kamijima 2013 Kiga 2011
	Rat neurons	AFPI		8 hrs	10 mg/ml	Rubinsky 2010
ill	Human hepato cell Rat heart	AFPIII AFPI, III	+4°C 7		10 mg/ml 15 mg/ml	Hirano 2008 Amir 2004
	Carp Spermatozoa	AFPI, III			10 mg/ml	Karanova 2002
	Sheep embryo	AFPI, III			10 mg/ml	Baguisi 1997
	Human platelet	AFGP		1days	1 mg/ml	Tablin 1996
	Human oocyte	AFPI, III		8 hrs	1 mg/ml	Rubinsky 1993
	Rat liver	AFPIII		4 hrs	15 mg/ml	Lee 1992
	bovine oocyte	AFPI, II, II		4 hrs	20 mg/ml	Rubinsky 1991
	pig oocyte	AFGP	+4°C 2	4 hrs	40 mg/ml	Rubinsky 1990

| Freezing (Cryo) preservation | References

Highly purified natural fish AFPI, III, and AFGP containing neither salts nor buffer detergents are now supplied from NICHIREI CORPORATION, Japan. Ref. Nishimiya et al. Synthesiology 2008, 1 (1) 4-17; Mahatabudding et al. Cryobiology and Cryotechnology 2016, 62 (2) 95-103; Fukushima et al. 2013, J Am Ceram Soc 96, 1029-1031. This research was supported by JSPS (15K13760).